Learning to Combine Kernels for Object Categorization
نویسندگان
چکیده
منابع مشابه
Learning to Combine Kernels for Object Categorization
Kernel classifiers based on the hand-crafted image descriptors proposed in the literature have achieved state-of-the-art results in several dataset and been widely used in image classification systems. Due to the high intra-class and inter-class variety of image categories, no single descriptor could be optimal in all situations. Combining multiple descriptors for a given task is a way to impro...
متن کاملLearning semantic object parts for object categorization
Appearance based approaches to object recognition mostly rely on measuring the visual similarity of objects based on global or local descriptors. They have shown great success in object identification but often do not generalize to the more challenging case of object categorization, where category membership is often decided not only on a level of appearances, but also on a semantic level. It h...
متن کاملObject Categorization with SVM: Kernels for Local Features
In this paper, we propose to combine an efficient image representation based on local descriptors with a Support Vector Machine classifier in order to perform object categorization. For this purpose, we apply kernels defined on sets of vectors. After testing different combinations of kernel / local descriptors, we have been able to identify a very performant one.
متن کاملHow to Combine Color and Shape Information for 3D Object Recognition: Kernels do the Trick
This paper presents a kernel method that allows to combine color and shape information for appearance-based object recognition. It doesn't require to define a new common representation, but use the power of kernels to combine different representations together in an effective manner. These results are achieved using results of statistical mechanics of spin glasses combined with Markov random fi...
متن کاملLearning Saliency Maps for Object Categorization
We present a novel approach for object category recognition that can find objects in challenging conditions using visual attention technique. It combines saliency maps very closely with the extraction of random subwindows for classification purposes. The maps are built online by the classifier while being used by it to classify the image. Saliency is therefore automatically suited to the abilit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer and Information Science
سال: 2011
ISSN: 1913-8997,1913-8989
DOI: 10.5539/cis.v4n3p116